Biostatistics for Dummies

Biomedical Computing Cross-Training Seminar

October 18th, 2002
What is “Biostatistics”?

- Techniques
 - Mathematics
 - Statistics
 - Computing

- Data
 - Medicine
 - Biology
What is “Biostatistics”?

Knowledge of biological process

Biological data

prey

predators

population density

time
Common Applications
(Medical and otherwise)

- Clinical medicine
- Epidemiologic studies
- Biological laboratory research
- Biological field research
- Genetics
- Environmental health
- Health services
- Ecology
- Fisheries
- Wildlife biology
- Agriculture
- Forestry
Biostatisticians Work

- Develop study design
- Conduct analysis
- Oversee and regulate
- Determine policy
- Training researchers
- Development of new methods
Some Statistics on Biostatistics

- Internet search (Google)
 > 210,000 hits
- > 50 Graduate Programs in U.S.

Too much to cover in one hour!
Center Focus

- MSU strengths
 - Computational simulation in physical sciences
 - Environmental health sciences
- Bioinformatics is crowded

- Computational simulation in environmental health sciences
 - Build on appreciable MSU strength
 - Establish ourselves
 - Unique capability
 - Particular appeal to NIEHS
Focus of Seminar

- Statistical methodologies
 - Computational simulation in environmental health sciences
 - Can be classified as “biostatistics”
- Stochastic modeling
 - Time series
 - Spatial statistics*
The Application

Of interest
- Cancer incidence rate
- Pesticide exposure

Of concern
- Age
- Gender
- Race
- Socioeconomic status

Objectives
- Suitably adjust cancer incidence rate
- Determine if relationship exists
- Develop model
 - Explain relationship
 - Estimate cancer rate
 - Predict cancer rate
The Data

 - Number of acres harvested
 - Type of crop

 - Tumor type
 - Age
 - Gender
 - Race
 - County of residence
 - Cancer morbidity
 - Crude incidence/100,000
 - Age adjusted incidence/100,000
Why (Bio)statistics?

Statistics
- Science of uncertainty
- Model order from disorder

Disorder exists
- Large scale rational explanation
- Smaller scale residual uncertainty

Entropy
$$E(\lambda^{(1)}; \mu^{(1)}) \geq E(\lambda^{(0)}; \mu^{(0)})$$

Chaos
$$f^{(k)}(x) = x_k = f(x_{k-1}) = f(f(\cdots f(x)))$$

Deterministic equation
Randomness
(Bio)statistical Data

- Independent identically distributed
- Inhomogeneous data
- Dependent data
 - Time series
 - Spatial statistics
Time Series

- Identically distributed
- Time dependent
- Equally spaced

Randomness
Objectives in Time Series

- Graphical description
 - Time plots
 - Correlation plots
 - Spectral plots
- Modeling
- Inference
- Prediction
Time Series Models

Linear Models

\[X(t) = \sum_{j=0}^{\infty} \phi_j \varepsilon(t-j) \]

- \(\varepsilon(t) \sim \text{i.i.d} \)
- Zero mean
- Finite variance
- \(\phi_j \) square summable

Covariance stationary

- Constant mean
- Constant variance
- Covariance function of distance in time

\[\gamma(\nu) = \mathbb{E}[X(t)X(t+\nu)], \quad \nu = 0, 1, 2, \ldots \]
Nonlinear Time Series

- Amplitude-frequency dependence
- Jump phenomenon
- Harmonics
- Synchronization
- Limit cycles

Biomedical applications
- Respiration
- Lupus-erythematositis
- Urinary introgen excretion
- Neural science
- Human pupillary system
Some Nonlinear Models

- Nonlinear AR
 - Additive noise
- Threshold
 - AR
 - Smoothed TAR
 - Markov chain driven
 - Fractals
- Amplitude-dependent exponential AR
- Bilinear
- AR with conditional heteroscedasticity
- Functional coefficient AR
A Threshold Model

\[
\begin{cases}
\begin{bmatrix}
0 & 0 \\
0 & 0.25
\end{bmatrix}
\begin{bmatrix}
x_{t-1} \\
y_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0
\end{bmatrix}
\quad \text{with probability 0.01} \\
\begin{bmatrix}
0.85 & 0.04 \\
-0.01 & 0.85
\end{bmatrix}
\begin{bmatrix}
x_{t-1} \\
y_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
1.6
\end{bmatrix}
\quad \text{with probability 0.85} \\
\begin{bmatrix}
0.20 & -0.26 \\
0.26 & 0.22
\end{bmatrix}
\begin{bmatrix}
x_{t-1} \\
y_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0.8
\end{bmatrix}
\quad \text{with probability 0.07} \\
\begin{bmatrix}
-0.15 & 0.28 \\
0.26 & 0.24
\end{bmatrix}
\begin{bmatrix}
x_{t-1} \\
y_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
1
\end{bmatrix}
\quad \text{with probability 0.07}
\end{cases}
\]

with initial conditions \[
\begin{bmatrix}
x_0 \\
y_0
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
A Threshold Model
Describing Correlation

- **Autocorrelation**
 - AR: exponential decay
 - MA: 0 past q

- **Partial autocorrelation**
 - AR: 0 past p
 - MA: exponential decay

- **Cross-correlation**

- Relationship to spectral density
Spatial Statistics*

- Data components
 - Spatial locations
 \[S = \{s_1, s_2, \ldots, s_n\} \]
 - Observable variable
 \[\{Z(s_1), Z(s_2), \ldots, Z(s_n)\} \]
 - \[s \subseteq D \subseteq R^k \]
- Correlation

- Data structures
 - Geostatistical
 - Lattice
 - Point patterns or marked spatial point processes
 - Objects
- Assumptions on \(Z \) and \(D \)
Biological Applications

- Geostatistics
 - Soil science
 - Public health
- Lattice
 - Remote sensing
 - Medical imaging
- Point patterns
 - Tumor growth rate
 - In vitro cell growth
Spatial Temporal Models

Combine time series with spatial data

Application

- Time element
 - Pesticide exposure → time → develop cancer

- Spatial element
 - Proximity to pesticide use