The spatial contribution of translation speed to tropical cyclone wind structure

Pat Fitzpatrick and Yee Lau Geosystems Research Institute at Stennis Mississippi State University

Basic issue: the methodologies of how storm speed asymmetries are included in parametric hurricane models may need to be re-examined

- Review the two main methodologies: the SLOSH method, and the Schwerdt method
- A third obscure equation from Jakobsen and Madsen will also be analyzed
- Rudimentary analysis conducted of storm speed asymmetries using HWINDS data
- Conclusions and discussion

References used in talk

Jakobsen, F., and H. Madsen, 2004: Comparison and further development of parametric tropical cyclone models for storm surge modeling. Journal of Wind Engineering, 92, 375-391.

Jelesnianski, C. P., 1966: Numerical computations of storm surges without bottom stress. Monthly Weather Review, 94, 379-394.

Jelesnianski, C. P., J. Chen, and W. A. Shaffer, 1992: SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Report NWS 48, 71 pp.

Schwerdt, R. W., F. P. Ho, and R. R. Watkins, 1979: Meteorological criteria for Standard Project Hurricane and probable maximum hurricane wind fields, Gulf and East Coast of the United States. NOAA Technical Report NWS 23, 317 pp.

Parametric equation philosophy

- $V_{sym}(\tilde{V}_{max}, r_{max}, r, x_1, x_2, x_3 \dots) \rightarrow \text{symmetric wind field; often a shape factor is used}$
- $V_{total} = V_{sym} + A$ • $V_{total} = V_{sym} + A$ \rightarrow asymmetry (A) added for total wind field note \tilde{V}_{max} requires increasing 10-m V_{max} above PBL, and decreasing for asymmetry
- Compute pressure field from V_{sym} assuming gradient wind balance
- Reduce total wind field to 10-meter height
- Adjust for inflow angles

Used in most storm surge model applications. Also used in hurricane risk assessments and in many other purposes

SLOSH asymmetry equation

 $A(V_{spd}, r_{max}, r) = V_{spd} \frac{2rr_{max}}{r^2 + r_{max}^2}$

Which looks suspiciously similar to the SLOSH symmetric wind field equation

 $V_{sym}(V_{max}, r_{max}, r) = V_{max} \frac{2rr_{max}}{r^2 + r_{max}^2}$

Justification (pg 14, NOAA Technical Report NWS 48 on SLOSH, published 1992)

- "Empirical tests with SPLASH...show surges not overly sensitive" to asymmetry term
- No documentation or graphics supporting equation
- Does state "could be faulty for a weak storm moving rapidly"
- Originally documented in Jelesnianski (1966), who states this is a "gross correction" (pg 293)

• Seems to have been chosen for consistency with symmetric wind profile equations, and because it produces "reasonable" results

• The primary asymmetry equation used today in most storm surge model forcing

SLOSH asymmetry equation radial distribution

 $w = \frac{A}{V_{spd}}$

Radial distribution SLOSH asymmetry factor divided by storm speed

Note the radial weight is independent of storm speed

Jakobsen and Madsen (JM) asymmetry equation

$$A(V_{spd}, r_{env}, r) = V_{spd} \exp\left(-\frac{r}{r_{env}}\right)$$

where r_{env} is 500 km; published 2004

Radial distribution JM asymmetry factor divided by storm speed

Weight at r_{max} is nearly unity, then decreases slowly to 0.5 in the environment.

Schwerdt asymmetry equation at r_{max}

$$A(V_{spd}) = \alpha V_{spd}^{\kappa}$$

Justification (pg 234, NOAA Technical Report NWS 23, published in 1979)

- Graham and Nunn (1959) suggest α =0.5, κ =1. Also in SLOSH references
- Schwerdt states "Appears to be...unreasonable. When V_{spd} is large, a lesser adjustment (is suggested). When V_{spd} is small, there is not enough asymmetry across the hurricane"
- Schwerdt altered to α =1.5, κ =0.63 (for units of knots).
- No documentation or graphics supporting equation for A by itself.
- Used in some CIRA applications

Schwerdt asymmetry equation storm speed distribution

Schwerdt asymmetry factor at Rmax divided by storm speed

Examination of asymmetry equations using HWINDS

Methodology (rudimentary)

- Archive 2D tropical cyclone surface wind analyses product HWINDS (2005-2012)
- Akima spline fit to storm centers; storm speed computed from spline
- V_{max} and R_{max} computed in each dataset. V_{opp} computed at R_{max} in opposite quadrant
- Compute $(V_{max}-V_{opp})/2$. Perform scatterplots versus V_{spd} and least squares
- Hypothesis Acknowledging that asymmetries are formed from several mechanisms, a relationship can still be identified capturing a glimpse of the radial storm speed asymmetry contribution

Summary, Asymmetry Weights

indicates more reduced inner-core asymmetry factor for fast storms may be needed

Scatterplots at different radii, asymmetry versus V_{SPD} Explained variance ranges from 9% to 18%

- Storm speed dependence still seen. Outliers for fast storms decrease outside of 100 km.
- Slope and y intercept decreases out to 300 km, indicating asymmetry decreases radially

Summary, Assymmetry Weights Including HWINDS dataset

Future work Incorporation of new asymmetry scheme into MSU parametric scheme

The hurricane winds are based on a variant of the Holland (1980) wind profile:

$$p(r, B, p_{env}, p_c, R_{max}) = p_c + [p_{env} - p_c] e^{-Ar^{-s}}$$

$$V(r, B, f, p_{env}, p_c, R_{max}) = \left[\frac{AB[p_{env} - p_c] e^{-Ar^{-s}}}{\rho r^{B}} + \left[\frac{rf}{2}\right]^2\right]^{0.5} - \left[\frac{rf}{2}\right]$$

$$V_{max}(B, p_{env}, p_c) = \left[\frac{B}{\rho e}\right]^{0.5} \left[p_{env} - p_c\right]^{0.5}; A(R_{max}, B) = R_{max}^{B}$$

where f is the Coriolis parameter, p_c is the storm central pressure, p_{env} is the environmental pressure (set to 1013 mb), and e is Euler's number (the base of the natural logarithm, approximately 2.71828). <u>A and B are scaling parameters which control the radial wind profile</u>. This formulation includes storm motion in V. Given storm motion, V_{max} , R_{max} , p_{env} , and R34, the algorithm iterates for B and then calculates p_c .

Because these equations apply above the boundary layer, but V_{max} and V34 (34-kt winds at R34) are at 10-m height within the boundary layer, V_{max} and V34 are multiplied by 1.11 before the *B* iteration. On average, winds are 11% faster above the boundary layer (see <u>http://www.nhc.noaa.gov/aboutwindprofile.shtml</u>, and Powell and Black (1990)). However, little sensitivity in the *B* distribution was seen with this adjustment.

Parametric hurricane wind model flow chart

Conclusions

The subjectively-based Schwerdt and PM asymmetry equations capture some components of this study, but some magnitudes do not match HWINDS data. More study is warranted.

• In the context of the mean of all storms and average speeds, PM generally agrees with this study. The concept of decreasing asymmetry with radii is also supported.

• HWINDS overall shows smaller weights than PM for most storm speeds

 \bullet SLOSH weights do not align with this study in any context except at $r_{\rm max}$ for fast-moving storms

• The Schwerdt concept of larger (smaller) weight contribution to asymmetry for slow (fast) moving storms is supported. For slow-moving storms, HWINDS shows higher asymmetries than Schwerdt. The relationship is seen for all radii. (Recall Scwerdt only examined r_{max}.)

• For 10-knot moving storm, HWINDS shows an average weight of 1.0 at rmax, 0.75 50-100 km, then decreasing from 0.65 to 0.4 at 150-300 km.

• There is some evidence of outer-core asymmetry is a function of intensity (not shown). This is still being studied.

• Comment – In addition to parametric equation applications, this type of analyses could provide clues on data initialization and track forecast issues

Supplementary material

Advantage of this method

- 10-meter surface winds match the observed peak eyewall wind
- 10-meter surface winds match the observed radius of 34-knots winds
- Holland B an iterated solution, not predetermined
- Specification of wind direction that can vary radially
- Storm motion is included in the iteration, not added afterwards
 - Vmax=storm speed plus hurricane vortex eyewall
 - > V34=storm speed plus edge of hurricane vortex
- This allows a parametric model which:
 - Matches the National Hurricane Center forecast
 - Can match hindcast hurricane data for JPM studies, theoretical studies, risk modeling, etc.

• **Correctly uses storm motion**. Many schemes superimpose storm speed translation. This is incorrect usage. Super-positioning changes the wind stress, often artificially increasing the winds. The winds are then faster than Vmax and V34. However, observed winds already include storm motion.

Comparison of Storm 140 Winds from JPM-OS (left) versus Fitz Wind Model (right)

Odd placemen of peak winds in NNE eyewal sector for JPM-OS

Our placement based on spee and track direction

Everything else matches well

HWINDs-derived a Slopes

by intensity classes

