Meteorology and oceanography computational work at HPC²

Pat Fitzpatrick, Jim Corbin, Yee Lau, Chris Hill, Sachin Bhate, Nam Tran, Yongzuo Li

GeoResources Institute
Mississippi State University
Stennis Space Center branch

I. Background
II. Some hurricane examples (4DVAR, model coupling, storm surge)

Background

- Atmospheric modeling (MM5, COAMPS, WRF), operational and research
- Model coupling
- Data assimilation (OI, 3DVAR, 4DVAR), collaborations with NCAR
- Hurricanes
- Severe weather
- Sea breeze, coastal thunderstorm climatology
- Storm surge, ocean wave, and ocean circulation modeling

Although the following examples involve hurricanes, we perform research on a variety of meteorology and oceanography issues

Hurricane Lili's unexpected weakening

HURRICANE LILI DISCUSSION NUMBER 46
NATIONAL WEATHER SERVICE MIAMI FL
5 PM EDT WED OCT 022002
LILI WENT THROUGH ANOTHER BURST OF INTENSIFICATION THIS AFTERNOON... WITH THE CENTRAL PRESSURE FALLING FROM 954 MB TO 941 MB IN ABOUT 5 HR. THE HURRICANE HAS CONTINUED TO DEEPEN AT A SLOWER RATE SINCE 16Z...WITH THE CENTRAL PRESSURE FALLING TO 938 MB AT 20Z. THE MAXIMUM FLIGHT LEVEL WINDS FOUND BY THE VARIOUS AIRCRAFT SAMPLING LILI SO FAR ARE 136 KT...SO THE INITIAL INTENSITY IS SET TO 120 KT.
LILI IS SHOWING SIGNS OF PEAKING...AS THE AIRCRAFT AND SATELLITE IMAGERY INDICATE THE BEGINNING OF AN OUTER EYEWALL THAT WILL LIKELY BRING A HALT TO THE CURRENT INTENSIFICATION.
(TEXT DELETED)
IN ADDITION TO THE CONCENTRIC EYEWALLS...THE ACTUAL INTENSITY IS CATCHING UP WITH THE SATELLITE SIGNATURE AND THE OUTFLOW IS BEING RESTRICTED TO THE WEST AND SOUTHWEST BY AN UPPER-LEVEL TROUGH. THESE THINGS SUGGEST THAT LILI SHOULD PEAK IN THE NEXT 6-12 HR THEN UNDERGO FLUCTUATIONS IN STRENGTH UNTIL LANDFALL. REGARDLESS OF THE EXACT INTENSITY...LILI SHOULD MAKE LANDFALL AS A MAJ OR HURRICANE.

FORECASTER BEVEN
FORECAST POSITIONS AND MAX WINDS

INITIAL	$02 / 2100 Z 25.9 \mathrm{~N}$	90.0 W	120 KTS
12HR VT	$03 / 0600 \mathrm{Z} 27.5 \mathrm{~N}$	91.4 W	125 KTS
24HR VT	$03 / 1800 \mathrm{Z} 29.8 \mathrm{~N}$	92.3 W	125 KTS...INLAND
36HR VT	$04 / 0600 \mathrm{Z} 32.2 \mathrm{~N}$	91.9 W	65 KTS...INLAND
48HR VT	$04 / 1800 \mathrm{Z} 36.1 \mathrm{~N}$	89.0 W	35 KTS...INLAND EXTRATROPICAL
72HR VT	$05 / 1800 \mathrm{Z} 45.0 \mathrm{~N}$	74.0 W	30 KTS...INLAND EXTRATROPICAL

AFTER QUICKLY STRENGTHENING TO A STRONG CAT. 4 HURRICANE, LILI WEAKENED EVEN MORE RAPIDLY THAN IT HAD INTENSIFIED

LILI NEAR ITS MAXIMUM INTENSITY OF 145 MPH

LILI MAKING LANDFALL AS A CAT. 1 HURRICANE

Sensitivity of Lili to NASA satellite data

(to be published in AMS journal Monthly Weather Review)

4DVAR strategy

Cost function and gradient in 4DVAR6H1 and 4DVAR6H2

Gradient for both 4DVAR6H1 and 4DVAR6H2 have good convergence, which show all data were assimilated well.

30 iterations were integrated in each 4DVAR assimilation window. Each iteration takes about 5 hours!

Landfall

Difference of mixing ratio (solid line) and wind vectors at 950 mb

 between first 6-h 4DVAR and second 6-h 4DVAR

MM5 Simulation, Relative Humidity at 850mb on Oct 3, $200200 Z$

MM5_SIM_RH_850 (no_satellite) October 3, 200200 Z

MM5_SIM_RH_850 (satellite) October 3, 2002 00Z

MM5_SIM_RH_850 Ctrl-Satellite October 3, 2002 00Z

MM5 Simulation, Vertical Velocity at 850mb on Oct 3, $200200 Z$

MM5_SIM_VERT_VEL_850 (no_satellite) October 3, 2002 C

$-0.12-0.09-0.06-0.030 .000 .030 .060 .090 .120 .150 .180 .210 .240 .270 .30$
Vertical_Velocity(850mb)

MM5_SIM_VERT_VEL_850 (satellite) October 3, 200200

$-0.12-0.09-0.06-0.030 .00 \quad 0.030 .060 .090 .120 .150 .180 .210 .2+0.270 .30$
Vertical_Velocity(850mb)

MM5_SIM_VERT_VEL_850 Ctrl-Satellite October 3, $200200 Z$

$-0.30-0.25-0.20-0.15-0.10-0.050 .000 .050 .100 .150 .200 .250 .300 .350 .400 .450 .50$
VerticalVelocity_Ctrl-Satellite(850mb)

Cross sections of vertical velocity

18Z, 2 October

00Z, 3 October

Western eyewall has collapsed

Study of ocean influence on

 Hurricane Lili using model coupling

HYCOM ocean model Sea surface temperature

Note cool wake from ocean mixing

Latent heat flux, no coupling

Latent heat flux, with coupling

Conclusions on Lili's weakening

- Dry air intrusion caused western eyewall to collapse, and also impacted moisture field around hurricane
- Ocean mixing near coast reduced fluxes

Simulation of Hurricane Katrina's storm surge

ADCIRC Storm Surge
 Implementation

- The ADvanced CIRCulation (ADCIRC) Model for Shelves, Coasts, and Estuaries (ADCIRC) is a multi-dimensional, finite-element-based hydrodynamic circulation code.
- Typical applications include:
- Modeling tidally and wind-driven circulation in coastal waters
- Forecasting hurricane storm surge and flooding

Used by major governmental bodies in the United States

- Extensively applied by the U.S. Army Corps of Engineers and U.S. Navy
- Recently adopted by National Ocean Service for U.S. East coast
- Certified by FEMA for National Flood Insurance Program
- Adopted by several state offices

ADCIRC Storm Surge

 ImplementationSimulation of coastal regions - Large Domain Strategy
Correctly capture

- Basin to basin interactions
- Basin to shelf dynamics
- Shelf to adjacent coast/land dynamics

East coast, Gulf \& Caribbean Grid

ADCIRC grid - zoom in of North Gulf Coast

Calculations done at each point. Higher resolution done along shoreline, bays, and bayous to accurately simulation storm surge.

ADCIRC grid zoomed in on coastal bays and marsh

ADCIRC storm surge simulation

Surge values shown are relative to sea level. Subtract ground elevation to get water inundation values.

Applications

- Study evolution of surge after observations destroyed
- Sensitivity runs for levee design, impact of wetlands
- Timing of wind versus surge
- Surge forecasts and storm surge atlases

Time series of sustained wind, wind gust, and surge in Bay St. Louis

Time (Aug. 29)	Wind (mph)	Wind gust (mph)	Storm surge (feet)
3:00AM	40 (east-northeast)	46	
5:30AM	75 (east-northeast)	97	4
			6
6:30AM	86 (northeast)	112	6
	103 (east)	140	9
8:30AM	120 (southeast)	145	13
9:30AM	100 (south)	115	22
10:30AM	90 (west)	104	19
11:30AM	80 (west)	92	16
12:30PM			

Tropical storm-force winds begin after midnight. Hurricane-force winds begin around 5AM. Inundation from surge began 9-10:30AM depending on location

