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ABSTRACT 

 
Estimations of apparent diffusion coefficients usually 

consist of curve-fitting the output of 1-D models to 
experimental laboratory-measured data from porous 
aggregates shaped in different forms. In this research, a 
computational exploration is presented on the alternative 
use of three-dimensional models for the same purpose. The 
outputs of the 3-D models were compared to results 
generated by one-dimensional formulations. The 
comparison showed that there are significant discrepancies 
in the concentration values output by the models. Percent 
differences ranging from 30 to 90% were calculated. Those 
different estimations suggest that different values of the 
apparent diffusion coefficient may be obtained if the three-
dimensional solution of the diffusion equation would be 
used to match experimental results. 
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molecular diffusion 
 

1 INTRODUCTION 
 
The transport of contaminants within porous media 

occurs through pathways such as passive mass flow 
(dissolved solute moves with the moving water), liquid 
diffusion (solutes move within the solution by 
intermolecular interactions), and vapor diffusion (diffusion 
of solute vapor molecules in the pore air spaces). 

Conceptual models of liquid transport of solutes in 
porous media (such as soil) oftentimes partition the porous 
media matrix in regions where: a) mobile phase where the 
solution flows fast and is governed by advective-dispersive 
phenomena, and, b) non-mobile phase where no advection 
is present and the transport of the solute is pre-dominantly 
due to molecular diffusion. 

The mathematical theory of diffusion of a substance in 
isotropic substances [3] is described by: 
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In Equation (1), C is the concentration of diffusing 

substance and D the diffusion coefficient in free solution. 

To account for the retardation caused by the partition of the 
solute and the tortuosity of the diffusion path, an effective 
(or apparent) diffusion coefficient (De) is used for 
estimating diffusion in porous media [1]: , 
where τ is the tortuosity factor (0 < τ <1). Tortuosity is 
usually defined as the ratio of the mean path length of a 
dissolved species to the straight-line distance of the overall 
path [6].  

τDDe =

Several experimental attempts have been done to 
measure or estimate key diffusion parameters (such as 
diffusion coefficients) using disturbed and undisturbed soil 
cores. All of these attempts rely on the use of a simple one-
dimensional mathematical model of the diffusion process 
that is curve-fitted against experimental measurements to 
indirectly obtain the desired value. [7], [8], [9] and [10], 
conducted diffusion experiments under several different 
soil water contents using either soil columns or half-cells 
experimental set ups. Then, measured concentrations were 
compared to the output of the one-dimensional 
mathematical model presented in [5]:  
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where k is a retention coefficient. Apparent diffusion 
coefficients were obtained from this comparison. 

[11] presented a method for estimating diffusion 
coefficients in low-permeability porous media (orange silty 
clay loam). Soil columns were set up with an annular region 
of repacked aquitard material and a central core of medium-
grained quartz sand. The solute was transported through the 
central core by convection and hydrodynamic dispersion 
and through the annulus by radial diffusion. The effective 
diffusion coefficient in the aquitard material was obtained 
by fitting concentration measurements to the numerical 
output of a Crank-Nicholson solution of the radial diffusion 
equation in a cylinder or ring:  
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where r is the radius of the cylinder. 
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[2] assessed the influence of concentration gradients on 
solute transport in spherical aggregates using semi-
spherical expanded clay pebbles. They estimated the intra-



aggregate diffusion coefficient by saturating individual 
spheres with a KBr solution. Then, they fitted the analytical 
solution to the radial diffusion equation for a sphere using 
the diffusion coefficient as the fitting parameter (r is the 
sphere’s radius):  
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In this research, a three-dimensional computational 

model of several different porous aggregates is presented. 
The modeled porous media consists of particles that are 
arranged stochastically to approximate the actual network 
present inside typical soil environments. Solute diffusion 
into the porous media is assumed to be governed by the 3-D 
formulation of Fick's Law [4]. The questions that this paper 
intends to answer are: would the use of a three-dimensional 
mathematical model provide different estimations of the 
diffusion coefficient? If yes, to what extent are the 
estimations affected? 

 
2 METHODS 

 
To answer the questions formulated above, three 

modeling approaches were used. The computational 
experiments were set up to simulate approximately the 
actual laboratory experiments summarized in Section 1. 

A) Several three-dimensional shapes of porous 
aggregates were simulated computationally. A uniform 
structured raster 3-D grid was used where cubical grains 
were randomly located taking, as a whole, a cylindrical, 
spherical or annular aggregate shape. In those aggregates, 
the tortuous 3-D paths (through which the solute diffuses) 
are known by the positions of the cells that are not occupied 
by soil grains.  A 3-D version of Fick’s second law 
(Equation 1) is solved in those free cells. It is assumed that 
the diffusion coefficient is known and that its value 
corresponds to a free-solution diffusion coefficient.  

B) Values of tortuosity were calculated for each of the 
3-D aggregates. The free-solution diffusion coefficient was 
subsequently corrected with those tortuosity values. Those 
effective diffusion coefficients are then introduced into the 
corresponding 3-D mathematical model in which grain cells 
are absent (i.e., Equation (1 is numerically solved without 
considering grain cells).  

C) Effective diffusion coefficients were introduced into 
1-D models represented by Equations (2) to (4).  

Finally, the solute concentration results output by the 
three approaches are compared and analyzed.  

 
2.1 Numerical formulation 

The liquid solution in which the aggregate is submerged 
is assumed to be homogeneous. External Dirichlet 
boundary conditions are set up around, at the center or at 
the top of the aggregate (depending on the case), i.e., grid 

cells have a constant and known concentration through 
time: C (t) = C0, t > 0 at the boundaries. 

For the cylindrical aggregate, a constant concentration 
source was maintained at the top flat side. Lateral sides 
were maintained at zero concentration (non-diffusive 
surrounding wall). For the ring and sphere simulations the 
porous aggregates were considered to be submerged in a 
homogeneous solution of known and constant 
concentration. For all simulations, the nominal 
concentration value of C0=5 was used. In all numerical 
experiments, grains are assumed not to adsorb or desorb 
and the cells representing those grains are forced to have 
concentration values equal to zero at all times. Cells 
through which the liquid solution is free to diffuse have, 
initially, null concentration. 

 
2.2 Finite difference scheme (3-D model) 

The backward-time-central-space algorithm is used for 
it provides unconditional stability in the numerical solution. 
With this scheme Equation (1) becomes: 
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where 
2)( x
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Δ

=λ , and Δx=Δy=Δz 

This is a system of equations of the type: A c = b, where 
A is a seven diagonal sparse matrix of size (N-2) 3, N the 
number of cells in any of j, l or m directions. The vector c, 
of size (N-2) 3, is composed by the  unknown 
concentrations at time step n+1. b is a vector of  (N-2)

1+n
jlmC

3 
known values composed of the concentration values at time 
step n plus the known concentration values provided by the 
external and internal boundary conditions. The internal 
boundary conditions are imposed by the cells that 
correspond to the grains and are assumed to have null 
concentration at all times. 

 
2.3 Finite difference schemes for (1-D model) 

Cylinder Case: Without considering retention 
mechanisms) the finite-difference version of Equation (2) 
is: 
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where 
2)( z

tDe Δ
Δ

=λ  and De = D τ. 

Ring case (radial diffusion): Using BTCS, with 
radius= r0 , and with 

2)( r
De Δ

tΔ
=λ  the following system of 
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equations is generated for Equation (3): 
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In Equations (6) and (7): n = 1,2,3,4…N, correspond to 

time steps, j = 1,2,3,4…M represent the spatial steps along 
the radius of the cylinder or ring. 

Proceedings Nanotech 2006 Conference, NSTI, May 7-11, Boston, MA, Vol. 2, 593 – 597. 595

Sphere case: Using BTCS, Equation (4) is converted to:  
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Again, n = 1,2,3,4…N, correspond to time steps, j = 

1,2,3,4…M represent the spatial steps along the radius of 
the sphere. 

 
3 RESULTS AND DISCUSSION 

 
All results shown in this research correspond to a three-

dimensional uniform structured grid of 17×17×17 cells. The 
concentration at the external boundaries was constantly 
kept at a nominal value of 5.0 [M.L-3]. For all cases, D = 
1.024 [L2.T-1], Δx=Δy=Δz = 0.1 [L], Δt =0.1 [L]. 
Tortuosities were calculated using the least-resistance path 
algorithm providing the following mean values: τcylinder 

=0.807 (with standard deviation σ = 0.045), τring =0.816 (σ 
= 0.047), τsphere =0.834 (σ = 0.048). Effective diffusion 
coefficients are calculated using De = D*τ , resulting in De 
= 0.826 for cylinder, De = 0.836 for ring, and De = 0.854 for 
sphere. 

To compare the results of the two 3-D conceptual 
models and the 1-D models, concentration values were 
averaged (for the 3-D models) at the corresponding 
horizontal plane.  

For the cylinder case (Figure 1), the upper-right figure 
shows results for which the algorithm described by 
Equation (5) was applied without considering null diffusion 
at the soil grain cells. However, the diffusion coefficient 
was corrected due to the tortuosity present in the cylindrical 
aggregate (De=0.826). The lower-right figure in Figure 3 
shows results for which the diffusion coefficient was not 
corrected, i.e., a free solution value is used, but soil grain 
cells were taken into account in the computations. Results 
are visualized at the tenth time step. The concentration 
distribution in both cases is symmetrical, and values near to 
1.0 are estimated around the center of the aggregate at 
middle horizontal planes. Figure 1 also shows a comparison 
charts for concentration at the tenth time step as calculated 
by the 1-D model and the 3-D models. The 1-D model is 
shown to estimate higher concentration values than those 
estimated by the two 3-D models. Percent differences in 
calculated concentration values for the cylindrical 
aggregate are shown in the upper chart of Figure 4.  Percent 

differences between the 1-D and 3-D models are higher 
than 40% along most of the cylinder length.  
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Fig. 1. Concentrations in the cylindrical aggregate at the 
10th time step. Results for the simplified 3-D model with 
diffusion coefficient corrected by tortuosity and no soil 
grains (top). Results taking into account soil grains 
(bottom). The 1-D model estimates higher concentration 
values than the concentrations estimated by the 3-D models 
(left). 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Ring-shaped aggregate. Upper right figure was 
obtained with De= 0.836 (De= τ*D = 0.816*1.024). Lower 
figures for D=1.024, considering grain cells. The one-
dimensional model estimates a less efficient diffusion 
inside the aggregate, although the diffusion seems to be 
more rapid at the outer ring layers at the tenth time-step. 

Figure 2 shows results for the ring-shaped aggregate. 
Averaged results for two planes (top and middle) are also 
shown. At the tenth time-step the 1-D model estimates quite 
different values of concentration, especially near the center 
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of the aggregate. Percent differences of the 1-D results 
(with respect to 3-D results) range from 50% to 90% for 
regions near the center of the ring, and range from 10% to 
50% the rest of the radial distances (see middle chart in 
Figure 4). 
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Fig. 4. Percent differences between concentration 
estimations of 1-D and 3-D models. Results show percent 
differences greater than 30% (up to 90%) in the 
concentration values estimated by the 1-D models with 
respect to the 3-D models 

In the cylinder case, the aggregate is assumed to be 
exposed to constant concentration cells only at the top flat 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

Fig. 3. Diffusion inside the spherical aggregate. As in the 
ring shaped aggregate, 1-D concentration estimations are 
shown to be smaller than those values calculated by the 3-D 
formulations. 

For the spherical aggregate, the differences between the 
1-D and 3-D models are similar as those for the cylindrical 
aggregate (see Figure 3). The concentration values 
calculated by the 1-D model at the center of the aggregate 
are more than 45% different from the estimations of the 3-
D models (see bottom chart of Figure 4). Near the periphery 
of the sphere, percent differences range from 0% to 35% in 
absolute value. For the rest of the radial distances, percent 
differences are greater than 45%.  

The concentration values estimated by the 3-D models 
for the cylinder case are shown to be smaller to those 
concentration estimations output by the corresponding 1-D 
model. For the ring and sphere cases the trend is reverse: 1-
D estimations are higher than 3-D output values. This 
occurs because in the sphere and ring cases the grid 
representing the porous aggregate is surrounded by grid 
cells containing a constant value of non-zero concentration 
(C0=5.0) through time. Therefore, molecular diffusion of 
the solute into the aggregate may begin at any cell at the 
periphery of the aggregate grid (i.e., at any cell not 
representing the porous material). Diffusive transport to 
inner free cells depends on the availability of free diffusion 
paths, but it is reasonable to assume that molecular 
diffusion into the spherical and annular aggregates is more 
effective than in the cylinder case because more peripheral 

free cells in those aggregates are exposed to the 
surrounding constant-concentration cells. Concentration 
values at positions near the center of the sphere and ring 
estimated with the corresponding 1-D models are lower 
because at those inner positions the radial diffusion models 
(Equations 7 and 8) only allow diffusion to occur from 
outer (j-1) or inner (j+1) radial positions. Three-
dimensional models (Equation 5) allow diffusion from any 
direction (j, l, and m). Therefore, diffusion is estimated to 
be less effective and, correspondingly, diffusion 
coefficients would result smaller according to the 1-D 
approach.  
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side. Free cells at the bottom and the lateral outer surfaces 
will not have any chance of transport solute because they 
are not exposed to it. Therefore, three-dimensional 
diffusion will only occur from the top, resulting in slow 
transport of solute towards t

further delayed by the imposed lateral boundary 
conditions that force lateral cells (external to the aggregate 
grid) to contain a constant concentration value of 0.0 
through time (non-diffusive surrounding walls). These 
boundaries (that mimic sealed impermeable walls from 
experiments) produce a concentration dilution effect in free 
cells near them, resulting in a less effective three-
dimensional diffusion. In the corresponding 1-D model 
(Equation 6) at any given cell j, the concentration value Cj 
at time n+1 is a linear combination of concentrations at j, 
j+1 and j-1 cells, at time-steps n and n+1 respectively. 
Therefore, as long as one of those cells contains a non-zero 
concentration value, cell j at time n+1 will have a non-zero 
value. This produces a faster transport towards the bottom 
of the cylinder because there is no additional concentration 
dilution (as that occurring in the 3-D models) since lateral 
boundary conditions are not necessary in the 1-D 
formulation.  

The considerations above lead to conclude that, for the 
cylinder case, diffusion coefficients estimated using the 1-D 
model would be bigger than those diffusion coefficient 
values that a 3-D approach would give. 

 
4 CONCLUSIONS 

 
The comparison of averaged concentration values output 

from the 3-D models to the 1-D models results showed that 
there are significant discrepancies in the concentration 
values output by the models. Overall, all simulations show 
that there are percent differences great

tration values estimated by the 
pect to the 3-D models, alo

ths 
 Those different estimations suggest that different 

values of the apparent diffusion coefficient may be obtained 
if the three-dimensional solution of the diffusion equation 
would be used to match experimental results. Further 
research using higher-resolution grids is necessary to test 
this hypothesis.  
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