Blue Collar Computing:
Productivity and Workforce Development through Technology

Ashok Krishnamurthy, Ph.D.
Director of Research and Scientific Development

HPC for the Rest of US
HPC for the Common Man
Functions - Scope of Activity

Supercomputing
Computation, software, storage, and support services empower Ohio’s scientists, engineers, faculty, students, businesses and other clients.

Networking
Ohio’s universities, colleges, K-12 and state government connect to the network. OSC also provides engineering services, video conferencing, and support through a 24x7 service desk.

Research
Lead science and engineering projects, assist researchers with custom needs, partner with regional, national, and international researchers in groundbreaking initiatives, and develop new tools.

Education
The Ralph Regula School of Computational Science delivers computational science training to students and companies across Ohio.
OSCnet with all connected partners

As of 3/22/2007

HPC for All
October 12, 2007

As of 3/22/2007

- OSCnet PoP
- Regen Site
- OSCnet Link
- Leased
- Proposed
- Higher Ed (Broadband)
- Higher Ed (not Broadband)
- ITCs (Broadband)
eTech Affiliates (Broadband)
Ohio Broadband Council supports implementing Broadband Ohio plan

- Expand access statewide
- Streamline state government
- Promote public and private broadband services and investments
- Focus on economic development

Ohio Broadband Council (OBC) - OIT/OSC Co-Chairs
- Rural Broadband
- Digital Inclusion
- Application Innovation
- Contracting

Technical Coordination Committee - OSC/OIT Co-Chairs

Ohio Supercomputer Center (OSC)

OSCnet

Office of Information Technology (OIT)

NextGen

Broadband Ohio

- Higher Education
- Agriculture
- State & Local Government
- Economic Development

- K-12 Education
- Health
- Under-served
- Public Safety

- Blue Collar Computing
- Public TV
- Community Rings
- Courts

- Research
 - Federal • State • Local
- Public TV
- Community Rings
- Public/Private

HPC for All
October 12, 2007
Blue Collar Computing: a focused industrial solution

OSC introduced the idea of Blue Collar Computing at SC2004

Invited Talk: Towards a High Performance Computing Economy: Blue Collar Computing

Presented by: Stanley C. Ahalt, Ph.D., Ohio Supercomputer Center
Pittsburgh, Pa., November 6-12, 2004

Blue Collar Computing (BCC) provides industrial clients with supercomputing resources, training, and expertise to enhance their competitiveness
Blue Collar Computing focuses on novice and experienced industrial uses

• Two classes of industrial clients:
 – Experienced HPC users who need access to larger systems for specific tasks (“peaking” facility)
 – Novice HPC users who are exploring use of HPC (often prefer web portals)

• BCC approach to novice – and some experienced – users is to develop industry-specific portals in collaboration with industry trade groups and industry-focused consulting firms
BCC: Filling in the missing middle
Blue Collar Computing National Partnerships

- BCC Partnership: OSC, University of Southern California Information Sciences Institute (USC/ISI), and Council on Competitiveness (CoC)
- OSC works closely with the CoC to promote HPC for industrial productivity
- OSC is part of the CoC and USC/ISI effort to create a National Innovation Collaboration Ecosystem (NICE)
- CoC and USC/ISI want to scale OSC BCC project up to a national level
The Vision: Create a National Innovation Collaboration Ecosystem

Enable Companies, Entrepreneurs, Individual Inventors to:

Innovate Anywhere, with Anyone, using any Domain Specific Application Running at any Available High Performance Computing Center

Filling the Expertise Gap

Moving Users Forward

National Productivity Opportunity

Adapted from OSC Graphics
Blue Collar Computing’s Ohio Partners
Will Pringles Fly?

High Speed Conveying Create Vortices Shedding… …’Rocking Chips’ NOT GOOD!

HPC for All
October 12, 2007
BCC: E-Weld Predictor Portal

- BCC Example: eWeld portal in collaboration with EWi
- eWeld portal is being marketed by EWi to their membership
- eWeld currently supports arc welding for pipelines, but will be expanded to other welding methods
- Significantly increases the ability of EWi membership to use computer simulation to determine weld parameters

eWeld Predictor is now a commercial product from EWi

<table>
<thead>
<tr>
<th>EWI eWeld Portal Impact</th>
<th>Previously</th>
<th>E-Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertise Needed</td>
<td>Ph.D.</td>
<td>B.S.</td>
</tr>
<tr>
<td>Run Time</td>
<td>52 days</td>
<td>4-5 days</td>
</tr>
<tr>
<td>Solution Time</td>
<td>6-8 months</td>
<td>1-2 months</td>
</tr>
</tbody>
</table>
BCC: Polymer Portal collaboration

- BCC Example: Polymer Portal in collaboration with PolymerOhio
- Polymers and plastics is a large industry sector in Ohio (2800 companies, 175,000 employees)
- The polymer portal will provide:
 - Expertise in polymer science and engineering
 - Computational resources and software for modeling and simulation
 - Databases with relevant material properties
 - Advanced instrumentation
 - Training
 - Vendor relevant material
 - Business intelligence and strategy
- PolymerOhio forum (9/11) focused on how BCC can help this sector
BCC: Create analytics program, services for shared instrumentation

- Example: Scanning Electron Microscope at OSU Center for Accelerated Maturation of Materials, Stark State, Timken, and OSCnet
- Demonstrates real-time user control
- Allows industry and higher ed to collaborate on image analysis and computational modeling

Example of shared instrumentation application: remote access of electron microscope
Blue Collar Computing & Business Assistance Act

- The Blue Collar Computing and Business Assistance Act would give small and medium size businesses the same opportunities to use computational science and HPC as large firms. As a result of this Act, up to five centers would be created that would collectively form the Advanced Multidisciplinary Computing Software Institute. These centers would:
 - Work with the businesses to help them adopt the use of computational science and high performance computing
 - Assist with the transfer of new computational science and high-performance computing technologies from federally sponsored research projects to small and medium size businesses
 - Identify industry needs for new types of modeling software and create a repository of modeling software
 - Adapt software packages to run effectively on HPC systems
Education: Building a workforce competent in computational science

<table>
<thead>
<tr>
<th>Level</th>
<th>Audience</th>
<th>Example</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert in Applications</td>
<td>Engineers/ scientists in university and business</td>
<td>Applying protein folding simulations to discover candidates for new drugs</td>
<td>Certificate and graduate programs; OSC training courses</td>
</tr>
<tr>
<td>Understand use of modeling for business and research</td>
<td>Current workforce College graduates</td>
<td>Using commercial computational package or service to test strength of new container design</td>
<td>Certificate program Undergraduate minor program OSC training program</td>
</tr>
<tr>
<td>Applying models to engineering and architecture fields</td>
<td>Ohio PLTW students and teachers</td>
<td>Modeling simple physics phenomena: statics, gravity, pendulum</td>
<td>PLTW training course for teachers; course given to students</td>
</tr>
<tr>
<td>Cause and effect relationships and simple modeling principles</td>
<td>Middle and high school students and teachers</td>
<td>Model of disease transmission in human population</td>
<td>Teacher professional development programs; workshops for middle and high school students</td>
</tr>
</tbody>
</table>
Education: Minor program in Computational Science

• Multi-institutional collaboration starting Fall 2007
• Programs in computational science taking advantage of Ohio’s distributed expertise
 – Undergraduate minor program
Education: Minor program overview

- Undergraduate minor program
 - 6-8 courses per year
 - 2-year degree: minor in computational science
- Faculty completing instructional modules
- Creating a matrix of modules, competencies
- Opportunities for other faculty to fill in with new modules, where necessary
- Minor program in place for Fall 2007

<table>
<thead>
<tr>
<th>Competencies for Undergraduate Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation and Modeling</td>
</tr>
<tr>
<td>Programming and Algorithms</td>
</tr>
<tr>
<td>Differential Equations and Discrete Dynamical Systems</td>
</tr>
<tr>
<td>Numerical Methods</td>
</tr>
<tr>
<td>Optimization</td>
</tr>
<tr>
<td>Parallel Programming</td>
</tr>
<tr>
<td>Scientific Visualization</td>
</tr>
<tr>
<td>One discipline specific course</td>
</tr>
<tr>
<td>Capstone Research/Internship Experience</td>
</tr>
<tr>
<td>Discipline Oriented Courses</td>
</tr>
</tbody>
</table>
Education: Expanding the program to reach more students and current employees

- Associate degree in science with concentration in computational science
- Certificate programs
 - Focus on skills needed by employers
 - “Stackable” certificates starting with basic skills and working up to advanced skills
 - Funding from Board of Regents to develop two or three special areas this fall
Education: Stackable certificates build computational science expertise

• Level 1 Certificates
 – Meet competencies of undergraduate minor
 – Will require mathematics review for displaced workers
 – Possible certificates:
 • Modeling and Simulation
 • Parallel computing
 • Visualization
 • Programming and algorithms for computational scientists

• Level 2 Certificates
 – More specialized, focused on specific computational expertise
Education: Next Steps

• Connect K-20, professional development, and workforce training activities for economies of scope and economies-of-scale
• Make effective use of multiple delivery methods for course materials
• Train the trainer – engage a wider range of faculty in computational science education
• Develop specialized certificate program in conjunction with community- and industry-based partners
• Work with community colleges to engage their business partners
• Connect certificate programs with HPC services and support
• Connect certificate programs with graduate programs
Tom Lange from P&G on Virtual Design
The “Madagascar Penguins” on HPC Applications

This is only a trailer. Full video on DVD is available from http://www.compete.org/hpc/
Questions?