Examination of the tropical cyclone environment through comparison of COSMIC with other satellite data

Christopher M. Hill, Patrick J. Fitzpatrick, and Yee Lau Geosystems Research Institute / Northern Gulf Institute Mississippi State University

March 3, 2009

63rd Interdepartmental Hurricane Conference

Motivation to use COSMIC

- Tropospheric sounding data are provided:
 - in the absence of reconnaissance flights or other satellite data
 - in cloudy or rain-filled regions, where other satellite data are contaminated
- Regions or layers of contrasting moisture content can be identified within:
 - the span and depth of a Saharan Air Layer (SAL)
 - the core of a tropical cyclone

Motivation to use COSMIC

The radio occultation method gives refractivity (N) from GPS signal delay

$$N = 77.6 \frac{p}{T} + 3.73 \times 10^5 \frac{e}{T^2} + \{ \text{ correction for ionospheric effects} \}$$

[dry term] [wet term]

Given N(p), it is possible to solve for T and/or e (and therefore T_d)

According to Ware et al. (1996), the error of *e* in terms of the error of *T* is:

$$\Delta e \approx \frac{(2TN - 77.6\,p)}{3.73 \times 10^5} \Delta T \approx 0.23 \Delta T$$

With N and p known, a value of T known within ± 3 K can typically provide a value of e within ± 1 hPa

Methodology

- Within the environment of the tropics, where temperature differences are small, the analysis of refractivity (*N*) alone can provide useful information regarding the distribution of moisture within one of the profiles
- COSMIC data are collected in the vicinity of recent tropical cyclones
 Helene 2006, Dean 2007, Bertha 2008
- Based on water vapor imagery and METEOSAT SAL (12.0 μm minus 10.8 μm) imagery, likely "dry" and "moist" profiles are qualitatively identified and differenced
- To detect SALs, COSMIC refractivity data are compared against CALIPSO aerosol subtype data

COSMIC and CALIPSO data near Dean 2007 17 Aug 2007

COSMIC point #1: 29.0°N 50.6°W COSMIC point #2: 20.3°N 51.9°W

GOES-12 imagery provided by NCDC 03 UTC 17 August 2007

Methodology

- COSMIC data are found within the circulation area of recent tropical cyclones
 - STY Sepat 2007, Bertha and Ike 2008
- 4th-order polynomial curve fitted against COSMIC profile
- difference between profile and fitted curve should show refractivity (moisture) anomalies
- COSMIC data are compared against water vapor and microwave imagery to determine cyclone structure

COSMIC and CALIPSO data near Bertha 2008 08 July 2008

COSMIC and CALIPSO data near Bertha 2008 08 July 2008

COSMIC analysis of Hurricane Ike 2008

Eyewall replacement cycle with Supertyphoon Sepat 08/16/2007

microwave imagery archived at the Naval Research Laboratory

COSMIC analysis of Supertyphoon Sepat 2007

COSMIC profile relative to <u>estimations</u> of the storm center and the radii of concentric eyes

Some conclusions on use of COSMIC near tropical cyclones

- Difference of COSMIC refractivity can show dry air signature of SAL
- Combined use of COSMIC and CALIPSO can definitively show SAL
- COSMIC can detect inner core features of a cyclone hidden under the cirrus canopy (precise matching with other data is crucial !)
- COSMIC may help to determine the stage of eyewall replacement cycle

Acknowledgments

The organization of COSMIC for the COSMIC profile data CIMSS / SSEC / Univ. of WI, NRL, NCDC, and NASA for satellite data Dr. Eric Hendricks for a helpful poster discussion